2 00 1 Poisson bracket , deformed bracket and gauge group actions in Kontsevich deformation quantization

نویسنده

  • Dominique Manchon
چکیده

We express the difference between Poisson bracket and deformed bracket for Kontsevich deformation quantization on any Poisson manifold by means of second derivative of the formality quasiisomorphism. The counterpart on star products of the action of formal diffeomorphisms on Poisson formal bivector fields is also investigated. Mathematics Subject Classification (2000) : 16S80, 53D17, 53D55, 58A50.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Poisson bracket , deformed bracket and gauge group actions in Kontsevich deformation quantization

We express the difference between Poisson bracket and deformed bracket for Kontsevich deformation quantization on any Poisson manifold by means of second derivative of the formality quasiisomorphism. The counterpart on star products of the action of formal diffeomorphisms on Poisson formal bivector fields is also investigated. Mathematics Subject Classification (2000) : 16S80, 53D17, 53D55, 58A50.

متن کامل

A Proof of the Tsygan Formality Conjecture for Chains

We extend the Kontsevich formality L∞-morphism U : T • poly(R ) → D poly(R ) to an L∞-morphism of an L∞-modules over T • poly(R ), Û : C•(A, A) → Ω(R), A = C(R). The construction of the map Û is given in Kontsevich-type integrals. The conjecture that such an L∞-morphism exists is due to Boris Tsygan [Ts]. As an application, we obtain an explicit formula for isomorphism A∗/[A∗, A∗] ∼ → A/{A, A} ...

متن کامل

Classical and quantum q-deformed physical systems

On the basis of the non-commutative q-calculus, we investigate a q-deformation of the classical Poisson bracket in order to formulate a generalized q-deformed dynamics in the classical regime. The obtained q-deformed Poisson bracket appears invariant under the action of the q-symplectic group of transformations. In this framework we introduce the q-deformed Hamilton’s equations and we derive th...

متن کامل

20 06 Deformation quantization of Poisson manifolds in the derivative expansion

Deformation quantization of Poisson manifolds is studied within the framework of an expansion in powers of derivatives of Poisson structures. We construct the Lie group associated with a Poisson bracket algebra and show that it defines a solution to the associativity equation in the leading and next-to-leading orders in this expansion.

متن کامل

Double quantization of CPn type orbits by generalized Verma modules

It is known that symmetric orbits in g∗ for any simple Lie algebra g are equiped with a Poisson pencil generated by the Kirillov-Kostant-Souriau bracket and the reduced Sklyanin bracket associated to the ”canonical” R-matrix. We realize quantization of this Poisson pencil on CPn type orbits (i.e. orbits in sl(n + 1)∗ whose real compact form is CPn) by means of q-deformed Verma modules. AMS Math...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008